

EiCLaR Horizon Europe project Open Symposium

Rotterdam, October 3, 2024

BoSS Consult - always one idea ahead

Who we are

- Founded in 2005 by Michael Boger, Stefan
 Spitzberg, and Uli Schollenberger
- Currently nine employees (hydrogeologists, geologists, geoecologists, environmental engineers), two student employees
- Projects in all over Germany and the Middle East
- Participation in EU-Projects
 - FOKS Focus on Key Sources of Environmental Risks
 - MAGPIan Management plan to prevent threats from point sources on the good chemical status of groundwater in urban areas
 - MAGIC Management of Groundwater at Industrially Contaminated Areas
 - EiCLaR Enhanced In Situ Bioremediation for Contaminated Land Remediation

BoSS Consult project sites in Germany

What we do

- **Contaminated sites**
 - Site investigation
 - Data acquisition and evaluation
- Brownfield redevelopment
 - Assessment of cost risks due to contamination
 - Due diligence phase I, II & III
- Groundwater
 - Aquifer diagnosis
 - High-resolution trace substances
 - Isotope methods
- Groundwater modelling
 - Flow-, transport-, and heat-models
 - Uncertainty quantification
 - Evaluation of existing models

Our clients

- Real Estate and Development
- Architecture and Construction
- Environmental and Waste Management
- Transportation

- Energy and Utilities
- Government and Public Services
- Manufacturing and Industry

Reactive Transport Numerical Modelling within EiCLaR

BoSS is championing the **reactive transport numerical model** for monitored bioaugmentation (MBR) and bioelectrochemical remediation (BER) applications. The aim of this software is to describe the **aerobic degradation of chloroethenes**, including electrobioaugmentation and electro-kinetic transport, and ultimately to optimise in-situ bioremediation. The approach consists in modelling simplified, controlled systems to understand reaction mechanisms and parameter sensitivity before moving on to more complex field sites.

Sensitivity analysis of reaction kinetics' parameters in a 1d synthetic experiment

PCE degradation in sand box experiments (in collaboration with VEGAS, University of Stuttgart)

TCE degradation at a pilot test site near Stuttgart (in collaboration with German Water Centre, TZW)

Chloroethene biodegradation rates can be described by **multi-Monod kinetics**:

$$R_{TCE} = -r_{TCE,max} \cdot \frac{C_{O_2}}{K_{O_2} + C_{O_2}} \cdot \frac{C_{TCE}}{K_{TCE} + C_{TCE}}$$

$$R_{cDCE} = -r_{cDCE,max} \cdot \frac{C_{O_2}}{K_{O_2} + C_{O_2}} \cdot \frac{C_{TCE}}{K_{TCE} + C_{TCE}} \cdot \frac{C_{cDCE}}{K_{cDCE} + C_{cDCE}}$$

 $r_{i,max}$: maximum degradation rate (*i* = O₂, TCE, cDCE) K_i : half-saturation constant of the limiting substrate *i*

 C_i : concentration

Acknowledgement:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 965945.

This presentation reflects only the author's view, and the European Commission is not responsible for any use that may be made of the information it contains.

