# Long-term Trichloroethylene Detoxification in Low-**Permeability Soil via Electrokinetic-Enhanced Bioremediation: Feasibility and Spatial-Temporal Patterns**

## Si-Ying YANG<sup>1</sup>, Li-Dan ZHANG<sup>1</sup>, He-Ping ZHAO<sup>1\*</sup>

1. MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China

**Motivation** To remediate low-permeability soil contaminated with trichloroethylene (TCE), combining bioremediation with the electrokinetic technique offers an innovative technology for *in-situ* treatment. In recent years, although the electrokinetic-enhanced bioremediation system (EK-BIO) has been demonstrated as a novel environmentally friendly technology with the potential to degrade several chlorinated hydrocarbons, the influencing mechanisms of electrode reactions in the EK-BIO system on long-term dechlorination are still poorly understood. Therefore, in this study, we aimed to assess the feasibility of the long-term operation of the EK-BIO system and to examine the spatial and temporal patterns of TCE detoxification in contaminated low-permeability soil.

### **Experiment Setup**

To investigate the spatial-temporal variations within the EK-BIO system, five 1-dimensional acrylic columns were set up in parallel only changing their operation period (28, 42, 56, 70 and 84 days). After a certain operation time, the soil in different regions was inoculated into anaerobic culture to evaluate the TCE degradation activity after EK enhancement.



#### **Results and Discussion**

#### Figure 2



During the operation, a total of 9 rounds of 500  $\mu$ M TCE was injected. Reductive degradation contributed to 46.52% of TCE removal. The dechlorination products consist of 30.6% ethelyn, 8.69% of VC, and 5.23% of DCE. The concentration of TCE in the pore water dropped from 500  $\mu$ M to ~ 55.5  $\mu$ M within 28 days and further reduced to 15.8  $\mu$  M, resulting in over 95% TCE removal.

For the 1<sup>st</sup> step of dehalogenation (TCE–cDCE), the activity increased with the increased EK time and this step could be completed within 20 days after 138 days. In contrast, the dehalogenation activity of 2<sup>nd</sup> (cDCE–VC) and 3<sup>rd</sup> steps (VC– ETH) gradually diminished with continuous EK application, ultimately failing to achieve complete dechlorination to ETH.

#### Figure 3



For the biological analysis of the soil, *Dehalococcoides* was first enriched at Area 1 near the anode (3.12%), however, it did not become the dominant species, with a relative abundance of 0.023% to 7.6% among 138 days. After 138 days, the copies of *tceA* exhibited 3.7fold higher than that of 28 days, illustrating the enhancement of 1<sup>st</sup> step reduction.



biological analysis of electrolytes, The For the presence of Comamonas (40.90%), Pseudomonas (18.63%) and *Diaphorobacter* (4.94%) at 28 days demonstrated that aerobic co-metabolism occurred in the electrode chambers. In the later stages, the

replacement by *Brevundimonas* indicated that direct aerobic oxidation dominated in the later period.

#### Conclusion

- **D** Re-inoculation of functional bacteria is required to sustain complete dechlorination from TCE to ethylene
- **D** The aerobic respiration in electrolytes enriches the degradation pathways and compensates for the loss of 2<sup>nd</sup> and 3<sup>rd</sup> dehalogenation processes

#### **Acknowledgement:**

This project has received funding from the National Natural Science Foundation of China (32061133002) and the European Union's Horizon 2020 research under grant agreement N°965945. This presentation reflects only the author's view. The NSFC and the European Commission are not responsible for any use that may be made of the information it contains.

